Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Chromatogr A ; 1722: 464911, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38626541

ABSTRACT

In this study, we have synthesised a chiral l-hyp-Ni/Fe@SiO2 composite as a chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) for the first time. This was achieved by coating two-dimensional (2D) chiral metal-organic framework nanosheets (MONs) l-hyp-Ni/Fe onto the surface of activated SiO2 microspheres using the "wrapped in net" method. The separation efficiency of the l-hyp-Ni/Fe chromatographic column was systematically evaluated in normal-phase HPLC (NP-HPLC) and reversed-phase HPLC (RP-HPLC) configurations, employing various racemates as analytes. The findings revealed that 16 chiral compounds were separated using NP-HPLC, and five were separated using RP-HPLC, encompassing alcohols, amines, ketones, esters, alkanes, ethers, amino acids and sulfoxides. Notably, the resolution (Rs) of nine chiral compounds exceeded 1.5, indicating baseline separation. Furthermore, the resolution performance of the l-hyp-Ni/Fe@SiO2-packed column was compared with that of Chiralpak AD-H. It was observed that certain enantiomers, which either could not be resolved or were inadequately separated on the Chiralpak AD-H column, attained separation on the 2D chiral MONs column. These findings suggest a complementary relationship between the two columns in racemate separation, with their combined application facilitating the resolution of a broader spectrum of chiral compounds. In addition, baseline separation was achieved for five positional isomers on the l-hyp-Ni/Fe@SiO2-packed column. The effects of the analyte mass and column temperature on the resolution were also examined. Moreover, during HPLC analysis, the l-hyp-Ni/Fe columns demonstrated commendable repeatability, stability and reproducibility in enantiomer separation. This research not only advances the utilisation of 2D chiral MONs as CSPs but also expands their applications in the separation sciences.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Metal-Organic Frameworks/chemistry , Stereoisomerism , Nanostructures/chemistry , Iron/chemistry , Nickel/chemistry
2.
Mikrochim Acta ; 191(5): 281, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649632

ABSTRACT

Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m-1 for (4-fluorophenyl)ethanol and 18,900 plates m-1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.

3.
J Chromatogr A ; 1711: 464444, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37837712

ABSTRACT

In this study, a new chiral stationary phase (CSP) was fabricated by covalent bonding of a [4+6]-type homochiral porous organic cage (POC) CC19-R onto thiolated silica via a thiol-ene click reaction. The CC19-R was synthesized via Schiff-base reaction between 2-hydroxybenzene-1,3,5-tricarbaldehyde and (1R, 2R)-(-)-1,2-diaminocyclohexane. The enantioseparation capability of the resulting CC19-R-based CSP was systematically evaluated upon separating various chiral compounds or chiral pharmaceuticals in normal phase HPLC (NP-HPLC) and reversed phase HPLC (RP-HPLC), including alcohols, organic acids, ketones, diols, esters, and amines. Fifteen racemates were enantioseparated in NP-HPLC and 11 racemates in RP-HPLC. Some racemates have been well separated, such as 4-chlorobenzhydrol, cetirizine (in the form of dihydrochloride), 1,2-diphenyl-1,2-ethanediol, and 3-(benzyloxy)propane-1,2-diol whose resolution values reached 3.66, 4.23, 6.50, and 3.50, respectively. When compared with a previously reported chiral POC-based column (NC1-R column), eight racemates were not separated on the NC1-R column in NP-HPLC and five racemates were not separated in RP-HPLC, but were well resolved on this column, revealing that the enantioselectivity and separable range of chiral POCs-type columns could be significantly widened using this fabricated CC19-R column. Moreover, the resolution performance of the CC19-R column was also compared with commercial Chiralpak AD-H [CSP: Amylose tris(3,5-dimethylphenylcarbamate)] and Chiralcel OD-H [CSP: Cellulose tris(3,5-dimethylphenylcarbamate)] columns. The column also can separate some racemates that could not be separated or not well be separated by the two commercial columns, showing its good complementarity to the two commercial columns on chiral separation. In addition, the column also had good stability and reproducibility with the relative standard deviation (n = 5) of the retention time and resolution lower than 1.0% and 1.8%, respectively, after it had undergone multiple injections (100, 200, 300, and 400 times). This work indicated that the features of good resolution ability and simple synthesis methods using with this POC-based CSP provided chiral POCs with potential application prospects in HPLC racemic separation.


Subject(s)
Click Chemistry , Sulfhydryl Compounds , Chromatography, High Pressure Liquid/methods , Porosity , Reproducibility of Results , Stereoisomerism
4.
J Sep Sci ; 46(18): e2300376, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37525411

ABSTRACT

A chiral pillar[3]trianglimine (C60 H72 N6 O6 ) with a deep cavity has been developed as a chiral selector and bonded to thiolated silica by thiol-ene click reaction to fabricate a novel chiral stationary phase for enantioseparation in high-performance liquid chromatography. The enantioseparation performance of the fabricated chiral stationary phase has been evaluated by separating various racemic compounds, including alcohols, esters, amines, ketones, amino acids, and epoxides, in both normal-phase and reversed-phase elution modes. In total, 14 and 17 racemates have been effectively separated in these two separation modes, respectively. In comparison with two widely used chiral columns (Chiralcel OD-H and Chiralpak AD-H), our novel chiral stationary phase offered good chiral separation complementarity, separating some of the tested racemates that could not be separated or were only partially separated on these two commercial columns. The influences of analyte mass, mobile phase composition, and column temperature on chiral separation have been investigated. Good repeatability, stability, and column-to-column reproducibility of the chiral stationary phase for enantioseparation have been observed. After the fabricated column had been eluted up to 400 times, the relative standard deviations (n = 5) of resolution (Rs) and retention time of the separated analytes were < 0.39% and < 0.20%, respectively. The relative standard deviations (n = 3) of Rs and retention time for column-to-column reproducibility were < 4.6% and < 5.2%, respectively. This study demonstrated that the new chiral stationary phase has great prospects for chiral separation in high-performance liquid chromatography.

5.
Anal Chem ; 95(35): 13289-13296, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37615071

ABSTRACT

Metallacycles are a novel class of supramolecular materials with circular structures, internal cavities, and abundant host-guest chemical properties that have exhibited good application prospects in many fields. However, to the best of our knowledge, no research on the use of metallacycles as stationary phases for gas chromatographic (GC) separations has been published yet. In this work, we report for the first time the use of a homochiral metallacycle, [ZnCl2L]2, as a stationary phase for GC separations. [ZnCl2L]2 was synthesized by reaction of (S)-(1-isonicotinoylpyrrolidin-2-yl)methyl-isonicotinate (L) with ZnCl2 via coordination-driven self-assembly. The [ZnCl2L]2-coated column displayed an excellent separation performance not only of organic isomers but also of racemic compounds. Sixteen racemates (including alcohols, esters, amino acid derivatives, ethers, organic acids, and epoxides) and 21 isomeric compounds (including positional, structural, and cis/trans-isomers) were well separated on the [ZnCl2L]2-coated column. Impressively, some racemates were resolved with high resolution values (Rs), including 1,2-butanediol diacetate (Rs = 25.86), ethyl 3-hydroxybutyrate (Rs = 20.97), 1,3-butanediol diacetate (Rs = 18.09), and threonine derivative (Rs = 18.61). Compared with the commercial ß-DEX 120 column for separation of the tested racemates, the [ZnCl2L]2-coated column exhibited good enantioseparation complementarity, enabling separation of some racemates that could not be separated, or were not well resolved, by the ß-DEX 120 column. In addition, many organic mixtures, such as n-alkanes, alkylbenzenes, n-alcohols, and a Grob test mixture, were also well separated on the [ZnCl2L]2-coated column. The column also has good reproducibility and thermal stability on separation. This work not only reveals the great potential of metallacycles for GC separations but also opens up a new application of metallacycles in separation science.

6.
Mikrochim Acta ; 190(6): 238, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222823

ABSTRACT

The manufacturing of chiral covalent triazine framework core-shell microspheres CC-MP CCTF@SiO2 composite is reported as stationary phase for HPLC enantioseparation. The CC-MP CCTF@SiO2 core-shell microspheres were prepared by immobilizing chiral COF CC-MP CCTF constructed using cyanuric chloride and (S)-2-methylpiperazine on the surface of activated SiO2 through an in-situ growth approach. Various racemates as analytes were separated on the CC-MP CCTF@SiO2-packed column. The experimental results indicate that 19 pairs of enantiomers were well separated on the CC-MP CCTF@SiO2-packed column, including alcohols, phenols, amines, ketones, and organic acids. Among them, there are 17 pairs of enantiomers that can achieve baseline separation with good peak shapes. Their resolution values on this chiral column are between 0.4 and 5.61. The influences of analyte mass, column temperature, and composition of the mobile phase on the resolution of enantiomers were studied. In addition, the chiral resolution ability of CC-MP CCTF@SiO2-packed column was compared with the commercial chiral chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some CCOF@SiO2 chiral columns (ß-CD-COF@SiO2, CTpBD@SiO2, and MDI-ß-CD-modified COF@SiO2). The CC-MP CCTF@SiO2-packed column exhibited some unique advantages and can complement these chiral columns in chiral separations. The research results show that the CC-MP CCTF@SiO2 chiral column offered high column efficiency (e.g., 17680 plates m-1 for ethyl mandelate), low column backpressure (5-9 bar), high enantioselectivity, and excellent chiral resolution ability for HPLC enantioseparation with good stability and reproducibility. The relative standard deviations (RSD) (n = 5) of the retention time, and peak areas by repeated separation of ethyl mandelate are 0.23% and 0.67%, respectively. It demonstrates that the CC-MP CCTF@SiO2 core-shell microsphere composite has great potential in enantiomeric separation by HPLC.

7.
Molecules ; 28(7)2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37049997

ABSTRACT

Porous organic cages (POCs) are a new subclass of porous materials, which are constructed from discrete cage molecules with permanent cavities via weak intermolecular forces. In this study, a novel chiral stationary phase (CSP) has been prepared by chemically binding a [4 + 6]-type chiral POC (C120H96N12O4) with thiol-functionalized silica gel using a thiol-ene click reaction and applied to HPLC separations. The column packed with this CSP presented good separation capability for chiral compounds and positional isomers. Thirteen racemates have been enantioseparated on this column, including alcohols, diols, ketones, amines, epoxides, and organic acids. Upon comparison with a previously reported chiral POC NC1-R-based column, commercial Chiralpak AD-H, and Chiralcel OD-H columns, this column is complementary to these three columns in terms of its enantiomeric separation; and can also separate some racemic compounds that cannot be separated by the three columns. In addition, eight positional isomers (iodoaniline, bromoaniline, chloroaniline, dibromobenzene, dichlorobenzene, toluidine, nitrobromobenzene, and nitroaniline) have also been separated. The influences of the injection weight and column temperature on separation have been explored. After the column has undergone multiple injections, the relative standard deviations (RSDs) for the retention time and selectivity were below 1.0 and 1.5%, respectively, indicating the good reproducibility and stability of the column for separation. This work demonstrates that POCs are promising materials for HPLC separation.

8.
J Chromatogr A ; 1683: 463551, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36219968

ABSTRACT

Chiral polyimine macrocycles (CPMs) constitute a new family of organic macrocycles that have defined cavities, rigid shapes, inherent chirality and multiple cooperative binding sites, and have shown great potential in diverse areas. However, the application of CPMs for high performance liquid chromatography (HPLC) enantioseparation has rarely been reported. In this work, a novel chiral stationary phase (CSP) for HPLC was prepared by chemical bonding of a CPM (C54H72N6O3) onto thiolated silica via thiol-ene click reaction. The CSP exhibited good enantioselectivity in both normal- and reversed-phase HPLC. Chiral compounds included alcohols, diols, ketones, organic acids, esters, ethers, amines, and epoxides were enantioseparated on the column in normal-phase mode (17 compounds) and reversed-phase mode (20 compounds). Importantly, broader chiral resolution was observed with the column than that obtained using our previously studied chiral macrocycle H3L-based column, indicating the potential to significantly improve and broaden applicability of this novel macrocycle-type CSPs. Moreover, the CSP exhibited good complementary enantioseparation to Chiralpak AD-H and Chiralcel OD-H columns, enabling separation of some racemates that could not be separated by the two popular chiral HPLC columns. In addition, the fabricated column exhibited good stability and reproducibility. The relative standard deviations (RSDs) (n = 5) of retention time and resolution after multiple injections were < 0.20 % and < 0.39 %, respectively. The results demonstrated the great potential of this type of CPM for HPLC separation of enantiomers.


Subject(s)
Alcohols , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Stereoisomerism , Silicon Dioxide/chemistry , Sulfhydryl Compounds , Amines , Epoxy Compounds , Ethers , Ketones
9.
Mikrochim Acta ; 189(9): 360, 2022 08 30.
Article in English | MEDLINE | ID: mdl-36042107

ABSTRACT

A spherical chiral porous organic polymer (POPs) COP-1 is synthesized by the Friedel-Crafts alkylation reaction of Boc-3-(4-biphenyl)-L-alanine (BBLA) and 4,4'-bis(chloromethyl)-1,1'-biphenyl (BCMBP), which was used as a novel chiral stationary phase (CSPs) for mixed-mode high-performance liquid chromatography (HPLC) enantioseparation. The racemic compounds were resolved in normal-phase liquid chromatography (NPLC) using n-hexane/isopropanol as mobile phase and reversed-phase liquid chromatography (RPLC) using methanol/water as mobile phase. The COP-1-packed column exhibited excellent separation performance toward various racemic compounds including alcohols, amines, ketones, esters, epoxy compounds, organic acids, and amino acids in NPLC and RPLC modes. The effects of analyte mass and column temperature on the separation efficiency of racemic compounds were investigated. In addition, the chiral resolution ability of the COP-1-packed column not only can be complementary in RPLC/NPLC modes but also exhibit a good chiral recognition complementarity with Chiralpak AD-H column and chiral porous organic cage (POC) NC1-R column. The relative standard deviations (RSD) (n = 5) of the retention time, resolution value, and peak area by repeated separation of 1-(4-chiorophenyl)ethanol are all below 3.0%. The COP-1 column shows high column efficiency (e.g., 17,320 plates m-1 for 1-(4-chlorophenyl)ethanol on COP-1 column in NPLC), high enantioselectivity, and good reproducibility toward various racemates. This work demonstrates that chiral POPs microspheres are promising chiral materials for HPLC enantioseparation.


Subject(s)
Amines , Polymers , Chromatography, High Pressure Liquid/methods , Ethanol , Porosity , Reproducibility of Results , Stereoisomerism
10.
J Chromatogr A ; 1679: 463415, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35977455

ABSTRACT

Porous organic cages (POCs) are a new kind of porous molecular materials, which have gained widespread interest in many fields due to their intriguing properties, including excellent molecular solubility, inherent molecular cavity and rich host-guest chemistry. To date, many chiral POCs have been explored as chiral stationary phases (CSPs) for gas chromatographic (GC) separation of enantiomers. However, the applications of chiral POCs for high performance liquid chromatography (HPLC) enantiomeric separation is extremely rare. In this study, we report the construction of thiol-ene click reaction for the preparation of CSP for HPLC by using a [4+8]-type chiral POC NC4-R as chiral selector. The fabricated CSP showed good chiral resolution performance not only in normal-phase HPLC (NP-HPLC) but also in reversed-phase HPLC (RP-HPLC). Seventeen and ten racemates were well resolved in the two separation modes, respectively, including ketones, esters, alcohols, phenols, amines, ethers, organic acids, and amino acids. Moreover, the fabricated column also shows good chiral recognition complementarity to two popular chiral HPLC columns (Chiralpak AD-H and Chiralcel OD-H columns) and previously reported chiral POC NC1-R-based HPLC column, which can resolve some racemates that unable to be resolved by the two commercially available chiral HPLC columns and NC1-R-based column. The relative standard deviation (RSD) values (n = 4) of retention time and resolution (Rs) of analytes separated on the column were less than 0.3 % and 0.5 % after it was subjected to different injections, showing the good reproducibility and stability of the NC4-R-based column. This work demonstrated high potentials of chiral POCs for HPLC enantioseparation and the applicability of chiral POC-based HPLC columns can be broadened by developing more chiral POCs with diverse structures as chiral selector for HPLC.


Subject(s)
Sulfhydryl Compounds , Chromatography, High Pressure Liquid , Porosity , Reproducibility of Results , Stereoisomerism
11.
Anal Chim Acta ; 1224: 340197, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35998985

ABSTRACT

Metal-organic cages (MOCs), as a promising class of crystalline porous materials with well-defined cavities, have attracted wide attention due to their multifarious potential applications in gas storage, host-guest chemistry, molecular recognition, separation, catalysis, sensing, and drug delivery and so on. Herein, we report that a chiral MOC [Fe4L6](ClO4)8 coated capillary column was fabricated for high-resolution gas chromatographic separation of various analytes, including n-alkanes, n-alcohols, positional isomers, aromatic hydrocarbon mixture, especially for racemic compounds. A series of racemic compounds such as alcohols, epoxides, aldehydes, ketones, ethers, esters, alkenes, sulfoxides and amino acid derivatives could be well separated on the [Fe4L6](ClO4)8 coated capillary column with high enantioselectivity and good reproducibility. Comparing the chiral resolution ability of the MOC [Fe4L6](ClO4)8 coated column with the commercial ß-DEX 120 column and the porous organic cage (POC) CC10 coated column, the chiral MOC column can be complementary to the two different types of columns. The results show that the chiral MOC [Fe4L6](ClO4)8 exhibited excellent separation performance toward a wide range of organic compounds, which will be very attractive as a new chiral separation media and has potential application prospects in separation science.


Subject(s)
Metals , Organic Chemicals , Alkanes , Chromatography, Gas/methods , Organic Chemicals/chemistry , Reproducibility of Results
12.
J Sep Sci ; 45(18): 3510-3519, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35880615

ABSTRACT

Chiral metal-organic frameworks have shown great potential in enantioselective separation and asymmetric catalysis due to their diverse and adjustable structures with abundant chiral recognition sites. Herein, a new chiral post-synthetic modification was used for preparing an achiral@chiral metal-organic frameworks core-shell composite [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] by a superficial chiral etching method. The [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] composite was utilized as a novel chiral stationary phase for HPLC enantioseparation. Various racemates were separated on the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco]-packed column (column A). It exhibited good chiral resolving ability toward many different kinds of racemates, especially chiral drugs. Among them, the highest resolution value for 1,2-diphenyl-1,2-ethanediol reaches 2.70. The relative standard deviations of retention time and peak area for repeated separation of 1,2-diphenyl-1,2-ethanol were 0.45% and 0.81%, respectively. Compared with the resolution ability of [Cu2 ((+)-Cam)2 Dabco]-packed column (column B), column A shows higher column efficiency and better separation performance than those of column B. The results indicated that the [Cu3 (Btc)2 ]@[Cu2 ((+)-Cam)2 Dabco] as a stationary phase can greatly improve the column efficiency and chiral resolution ability of chiral metal-organic frameworks, which demonstrated that the superficial chiral etching as an economic and efficient strategy opens up a new way for the application of metal-organic frameworks.


Subject(s)
Metal-Organic Frameworks , Biphenyl Compounds , Chromatography, High Pressure Liquid/methods , Ethanol , Ethylene Glycol , Metal-Organic Frameworks/chemistry , Stereoisomerism
13.
J Chromatogr A ; 1676: 463253, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35732093

ABSTRACT

Polyimine macrocycles are a new class of organic macrocycles with cyclic structures, well-defined molecular cavities, and multiple cooperative binding sites, which have recently aroused considerable research interest in molecular recognition and separation. Herein, we report the bonding of a [3+3] chiral polyimine macrocycle (H3L, C78H78N6O3) on thiol-functionalized silica gel using thiol-ene click chemistry to prepare a chiral stationary phase (CSP) for high performance liquid chromatography (HPLC). The fabricated column exhibited excellent chiral separation capability under both normal-phase and reversed-phase conditions. Fourteen and 10 racemates were well resolved on the column in normal-phase mode (using n-hexane/isopropanol as the mobile phase) and reversed-phase mode (using methanol/water as the mobile phase), respectively, including alcohols, esters, ethers, ketones, aldehydes, epoxides and organic acids. Moreover, the column also shows good selectivity toward positional isomers. Six positional isomers (dinitrobenzene, chloroaniline, bromoaniline, iodoaniline, nitrobrobenzene and nitrochlorobenzene) were well separated on the column. In addition, the effects of the injection mass and mobile phase composition on the separation were investigated. The column shows good reproducibility and stability after multiple injections with the relative standard deviation (RSD) (n = 5) of the retention time and resolution being < 0.96 % and 0.65 %, respectively. This study indicates that this type of chiral polyimine macrocycles is a promising chiral selector for HPLC enantioseparation and will push forward the applications of more novel chiral macrocycles for chiral chromatographic separation.


Subject(s)
Click Chemistry , Sulfhydryl Compounds , Chromatography, High Pressure Liquid/methods , Reproducibility of Results , Stereoisomerism
14.
Anal Chem ; 94(12): 4961-4969, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35306818

ABSTRACT

Porous organic cages (POCs) are an emerging class of porous materials that have aroused considerable research interest because of their unique characteristics, including good solubility and a well-defined intrinsic cavity. However, there have so far been no reports of chiral POCs as chiral stationary phases (CSPs) for enantioseparation by high-performance liquid chromatography (HPLC). Herein, we report the first immobilization of a chiral POC, NC1-R, on thiol-functionalized silica using a mild thiol-ene click reaction to prepare novel CSPs for HPLC. Two CSPs (CSP-1 and CSP-2) with different spacers have been prepared. CSP-1, with a cationic imidazolium spacer, exhibited excellent enantioselectivity for the resolution of various racemates. Twenty-three and 12 racemic compounds or chiral drugs were well enantioseparated on the CSP-1-packed column under normal-phase and reversed-phase conditions, respectively, including alcohols, diols, esters, ethers, ketones, epoxides, organic acids, and amines. In contrast, chiral resolution using CSP-2 (without a cationic imidazolium spacer)-packed column B was inferior to that of column A, demonstrating the important role of the cationic imidazolium spacer for chiral separation. The chiral separation capability of column A was also compared with that of two most popular commercial chiral columns, Chiralpak AD-H and Chiralcel OD-H, which exhibits good chiral recognition complementarity with the two commercial chiral columns. In addition, five positional isomers dinitrobenzene, nitroaniline, chloroaniline, bromoaniline, and iodoaniline were also well separated on column A. The effects of temperature, mobile phase composition, and injected analyte mass for separation on column A were investigated. Column A also showed good stability and reproducibility after repeated injections. This work demonstrates that chiral POCs are promising chiral materials for HPLC enantioseparation.


Subject(s)
Click Chemistry , Sulfhydryl Compounds , Amines , Cations , Chromatography, High Pressure Liquid/methods , Porosity , Reproducibility of Results , Stereoisomerism , Sulfhydryl Compounds/chemistry
15.
J Sep Sci ; 44(21): 3976-3985, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34490989

ABSTRACT

The unique features of uniform and adjustable cavities, abundant chiral active sites, and high enantioselectivity make chiral metal-organic frameworks popular as an emerging candidate for enantioselective separation. However, the wide particle size distribution and irregular shape of as-synthesized metal-organic frameworks result in low column efficiency, undesired chromatographic peak shape, and high column backpressure of such metal-organic frameworks packed columns. Herein, we report the fabrication of chiral core-shell microspheres [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 composite for high-performance liquid chromatography enantioseparation to overcome the above-mentioned problems. The [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column gave high-resolution separation of racemates under low column backpressure (10-22 bar), indicating its synergistic effect of the good column packing property of the SiO2 microspheres and the chiral recognition ability of [Cu2 (d-Cam)2 (4,4'-bpy)]n crystals. Thirteen kinds of chiral compounds including alcohols, amines, ketones, epoxides, and organic bases were well separated with good peak shapes and high column efficiency (18200 plates/m for 1-(9-anthryl)-2,2,2-trifluoroethanol) on the [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column. Among them, seven pairs of enantiomers achieved baseline separation and the resolution value for 1-(9-anthryl)-2,2,2-trifluoroethanol reached 11.22. Some effects such as column temperature, and analytes mass on the enantioseparations have been investigated. In addition, the [Cu2 (d-Cam)2 (4,4'-bpy)]n @SiO2 packed column exhibited good stability and repeatability for the separation of chiral compounds. The relative standard deviations for five replicate separations of 1-phenylethanol were less than 1.0, 1.5, 3.0, and 2.0% for the retention time, peak area, number of theoretical plates, and resolution, respectively. The research results demonstrated the development of chiral metal-organic frameworks core-shell microspheres composite provide a promising platform for their practical application in chiral separation fields.

16.
Talanta ; 235: 122754, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517622

ABSTRACT

Chiral covalent organic frameworks (CCOFs) have potential application in enantioseparation due to their advantages, such as large surface area, abundant chiral recognition sites and good chemical stability in organic solvents. However, the application of CCOFs in high performance liquid chromatography (HPLC) for enantioseparation has been rarely reported because of the shortcomings of CCOFs, such as light weight, irregular shape, and wide particle size distribution. In order to overcome the above shortcomings, a one-pot synthetic method was adopted to prepare a core-shell composite (ß-CD-COF@SiO2) via the growth of chiral ß-CD COF on the surface of amino-functionalized SiO2 microspheres. The as-prepared ß-CD-COF@SiO2 microspheres were used as a stationary phase for HPLC enantioseparation. The resolution ability of the ß-CD-COF@SiO2-packed column toward various chiral compounds was investigated using n-hexane/isopropanol as the mobile phase. The results show that the chiral ß-CD-COF@SiO2-packed column exhibited excellent chiral recognition ability for 24 pairs of chiral compounds with good reproducibility. These successful applications indicate that the preparation of the chiral COFs@SiO2 core-shell microspheres as a novel stationary phase for enantioseparation has good application prospects in HPLC.


Subject(s)
Metal-Organic Frameworks , Silicon Dioxide , Chromatography, High Pressure Liquid , Microspheres , Reproducibility of Results
17.
Mikrochim Acta ; 188(9): 292, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34363124

ABSTRACT

The fascinating framework structures and unique properties of chiral covalent organic frameworks (COFs) make them promising candidates as novel separation medium for high-performance liquid chromatography (HPLC). However, the irregular morphology, inhomogeneous particle size, and low density of conventional COF particles will lead to a low column efficiency, undesirable chromatographic peak shape, and high column backpressure of such COF-packed columns. In this work, a chiral COF CTpBD was synthesized by the Schiff base reaction between benzidine (BD) and chiral organic monomer CTp obtained through the reaction of 1,3,5-triformylphoroglucinol (Tp) and (+)-diacetyl-L-tartaric anhydride ((+)-Ac-L-Ta). The chiral COF CTpBD was immobilized on the surface of amino functionalized silica (SiO2-NH2) by an in situ growth approach to prepare the chiral COF core-shell microsphere composite CTpBD@SiO2, which was used as a novel chiral stationary phase (CSP) for HPLC enantioseparation. Various kinds of racemates were separated on the CTpBD@SiO2-packed column with a low column backpressure (8-11 bar). Some effects such as the analyte mass and column temperature on the HPLC enantioseparation have been studied in detail. The fabricated CTpBD@SiO2-packed column exhibited high column efficiency (e.g., 16,800 plates m-1 for atenolol), high enantioselectivity, and good reproducibility toward various racemates. The highest resolution value, retention factor, and separation factor reach to 2.11, 2.85, and 3.73, respectively. The relative standard deviations (RSD) of peak area, peak height, half-peak width, and retention time of atenolol were all below 3.0%.

18.
Mikrochim Acta ; 187(5): 269, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32291536

ABSTRACT

A hydroxyl-functionalized homochiral porous organic cage (POC) was synthesized and characterized by FTIR, NMR, thermogravimetric analysis (TGA), MALDI-TOF-MS, and elemental analysis. The synthesized homochiral POC was used as stationary phase to prepare a capillary gas chromatography (GC) column by a static coating method. The fabricated column shows excellent selectivity not only for the separation of positional isomers but also for the resolution of various racemates. Thirty-nine racemates have been resolved on the column, including alcohols, diols, halohydrocarbons, epoxides, esters, lactones, ketones, ethers, and organic acids. Compared to the commercial ß-DEX 120 column and previously reported chiral POCs (CC3-R, CC9, and CC10)-coated columns, there are 11, 10, 24, and 15 tested racemates that cannot be resolved on ß-DEX 120 column, CC3-R column, CC9 column, and CC10 column, respectively. This reveals that the fabricated column has prominent complementarity or superior separation performance to these columns in enantioseparation. Besides, the fabricated column can achieve some enantioseparations which are not possible using all previously reported chiral POC-based columns. Some positional isomers (xylenes, dichlorobenzenes, dibromobenzenes, nitrochlorobenzenes, and nitrobromobenzenes) were also separated with high-resolution values. The column exhibits good repeatability, reproducibility, and stability. The relative standard deviation (RSD) values of retention times were 0.03-0.18%, 0.11-0.92%, and 2.1-6.6% for run-to-run (n = 5), day-to-day (n = 5), and column-to-column (n = 3), respectively. The experimental results demonstrate the great potential of POCs for practical application in GC. Graphical Abstract A hydroxyl-functionalized homochiral porous organic cage was used as stationary phase for gas chromatography separation of racemates and positional isomers. The resolution of racemates mainly depended on hydrogen bonding, π-interaction, host-guest inclusion, steric fit, etc., while separation of positional isomers by shape-selective guest binding.

19.
Molecules ; 24(3)2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30682770

ABSTRACT

Porous organic cages (POCs) have attracted extensive attention due to their unique structures and tremendous application potential in numerous areas. In this study, an enantioselective potentiometric sensor composed of a polyvinyl chloride (PVC) membrane electrode modified with CC3-R POC material was used for the recognition of enantiomers of 2-amino-1-butanol. After optimisation, the developed sensor exhibited enantioselectivity toward S-2-amino-1-butanol ( log K S , R P o t = -0.98) with acceptable sensitivity, and a near-Nernstian response of 25.8 ± 0.3 mV/decade within a pH range of 6.0⁻9.0.


Subject(s)
Amino Alcohols/chemistry , Electrochemical Techniques , Electrodes , Hydrogen-Ion Concentration , Membranes, Artificial , Molecular Structure , Polyvinyl Chloride/chemistry , Porosity , Potentiometry , Sensitivity and Specificity , Stereoisomerism
20.
Molecules ; 23(11)2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30380604

ABSTRACT

Metal-organic frameworks (MOFs) have recently attracted considerable attention because of their fascinating structures and intriguing potential applications in diverse areas. In this study, we developed a novel method for determination of enantiomeric excess (ee) of (±)-1,1'-bi-2-naphthol by solid-phase extraction (SPE) using a chiral MOF, [Co(l-tyr)]n(l-tyrCo), as sorbent. After optimization of the experimental conditions, a good linear relationship between the ee and the absorbance of the eluate (R² = 0.9984) was obtained and the standard curve was established at the concentration of 3 mmol L-¹. The ee values of (±)-1,1'-bi-2-naphthol samples can be rapidly calculated using the standard curve after determination of the absorbance of the eluate. The method showed good accuracy, with an average error of 2.26%, and is promising for ee analysis.


Subject(s)
Metal-Organic Frameworks/chemistry , Naphthols/chemistry , Solid Phase Extraction/methods , Naphthols/analysis , Reproducibility of Results , Solid Phase Extraction/instrumentation , Solvents/chemistry , Spectrophotometry, Ultraviolet , Stereoisomerism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...